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INTRODUCTION

Recently. F.H. Ling and G. Schmidt (ref 1) argued that box-counting techniques are superior
to the Grassberger-Procaccia (correlation integral) algorithm (ref 2) for dealing with experimental
data sets.

Reference 1 applied a box-counting method to determine the capacity dimension D(0).
information dimension D(1), and correlation dimension D(2) of the attractors of the Henon map.
the logistic map, the Lorentz equation, and to the attractor of pulsar 0950+08. They also used the
conventional Grassberger-Procaccia method (i.e., the correlation integral method specialized to the
determination of the correlation dimension) to the same data sets. The box-counting algorithm of
Reference 1 is similar to that of Block, Bloh, and SchelInhuber (ref 3) in that only data concerning
occupied boxes are stored and analyzed.

The box-counting and correlation integral algorithms of Reference 1 yielded frictal
dimensions within about 3 percent of analytic values for the logistics map (using a 1000 point
sample). Henon map (2000 points), and Lorentz equation (4000 points) for embedding dimensions
2- 1. 2. and 3. respectively. Restricted point sets were employed to reflect the fact that experimental
point sets are generally limited to similar ranges. Reference I concluded that 4000 points are
sufficient for the determination of D(0), D(1), and D(2) of the fractal attractor of pulsar 0950+08.
The pulsar dimensions have values near 5 and were determined in a 14 dimensional embedding
space.

Reference I asserts that most authors use the correlation dimension as the "main measure"
of a strange attractor. They also conclude that box-counting algorithms require less computation
time and yield results at least as good as those obtained using the Grassberger-Procaccia method for
the correlation dimension. Therefore. Ling and Schmidt (ref 1) conclude that box-counting is
superior to the Grassberger-Procaccia algorithm. However. they also note that the Grassberger-
Procaccia algorithm is "superior" to box-counting for determining the capacity dimension.

Although Ling and Schmidt (ref 1) are particularly interested in algorithmic speed. they also
address a very important issue concerning multifractal measurement. viz.. How large a data set is
needed to obtain a reasonable approximation to the fractal measures of interest in a given case-?

It may well be the case that for highly complex chaotic dynamical systems (such as that
underlying the observations of pulsar 0950+08), the best one can hope to do is to determine D(0),
D(1), and D(2). However, there are numerous cases (for example. diffusion limited aggregation)
where the determination of D(q) for general q is important. This report describes a systematic
approach. over extensive ranges of q, to the question of convergence for box-counting and
correlation integral-based multifractal analysis.
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THEORY

The expression for the box-counting (Hentschell-Procaccia) generalized dimension D(q) in
a d dimensional topological space is

(q - 1)D(q) - limit q-'
8-0 ln(E) '

where in the summation i runs over N(E) occupied d dimensional hypercubes (boxes) of edge length
E and P,(E) is the probability of finding a point of the fractal set in the i'h box. As implicitly stated
in Eq. (1) of Reference 1 and demonstrated for a number of cases in Reference 4, box-counting
algorithms do not converge for q<O in many cases. In practice, one deals with finite subsets of the
fractal set and determines a numerical approximation to (q-l)D(q) by fitting

AKE)
In( P, (E)) = (q- I)D(q)ln(E) + Co'•t

jI.

over an "appropriate" range of E values.

The generalized correlation integral is defined as
VN

CQq,E) limit-[- H(E- 1x -xj)q1 *v-- N N~ £ is

where at each stage in the limit process x, and x, (d dimensional vectors) run over the N element
fractal subset and H(x) is the Heaviside function. The Hentschell-Procaccia fractal dimension D~q)
is determined by

(q - 1)D(q) = limit ln(C(q,E))

E-Vo" ln(E)
In practice. one deals with finite subsets of the fractal set and determines a numerical approximation
to (q-l)D(q) by fitting over a range of E. etc.. as in box counting. (Usually a Euclidean metric is
assumed for determining I xi - xj. Frequently. the outer summation in the expression for C(q.E) is
taken over a subset, a reference set, of the fractal subset.)

RESULTS AND DISCUSSION

Results were obtained for two specific numerical algorithms:

1. The agglomeration box-counting (ABC) algorithm (ref 4) represents box-counting
algorithms. The results of standard "sorting" box-counting algorithms (for relatively smaller ranges
of N) at all q were consistent with the results obtained via ABC for the models reported in
Reference 4.

2. The box-based correlation integral (BBCI) method (ref 5) provides the numerical
realization of the correlation integral method. BBCI converged near analytic values in all cases.
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These algorithms are well suited to the analysis of large data sets and are therefore well
suited to convergence studies. ABC and BBCI would require modifications to efficiently handle
relatively sparse data in high dimensional spaces.

The model point sets studied include Euclidean sets, Koch asymmetric [0.4,0.2] and
symmetric triadic snowflakes (ref 6), split snowflake halls (ref 7), the 13 element generator Koch
construction (ref 8) discussed in Reference 6, and the attractor for the sixfold (D6) symmetric
chaotic mapping of Figure 3 of Reference 9.

The algorithms were applied to identical model data for each N. The multifractal data were
stored in 768x768 box arrays, which simulate image acquisition data. The initiators of the Koch
constructions (ref 6) were randomly oriented with respect to the axes of the box array. The boxes.
in which the data to be analyzed were stored, were designated "elementary boxes." For the point
sets studied. Reference 4 demonstrated that as the number of elementary boxes increases, converged
values tend to be closer to analytic values, but the number of points required for convergence
increases.

Figures 1 through 5 present a selection of results of applying the box-counting algorithm
(ABC) and the correlation integral algorithm (BBCI) for specific fractal models and specific q
values. The graphs display measured D(q) versus a range of normalized ln(N). Each graph shows
open circles representing measured values connected by lines. If available, the analytic value of D(q)
is shown as a horizontal line.

Table 1 summarizes convergence results for the five model fractal sets. We refer to
"converged" results as those within 1 percent of the values obtained at the largest N and "good"
results as those within 5 percent. Converged values may differ from analytic values by more than
1 percent. Values of N sufficient to obtain converged results are denoted Ni and good results N,.
The range of N for 5 percent (or 1 percent) convergence extends below the value of N, (or NI) in
the table. It falls between N5 (or N1) and the next lower N point.

The definition of "good" convergence is arbitrary. Multifractal measures converged within
20 pcrcent might be important. One should not conclude that N, is a minimum number of points
for application of multifractal analysis. Table I or the figures serve as guides for the application of
box-counting and/or correlation integral algorithms.

The ABC algorithm converges to values near those of BBCI at all q for the Euclidean point
sets and the sixfold symmetric chaotic mapping; ABC diverges for q<0 for the other fractal point
set-.

BBCI overshoots and converges from above for the triadic snowflake (monofractal) and the
sixfold symmetric mapping. All other convergent cases approach their limits from below.

With the exception of the monofractal triadic snowflake. ABC and BBCI converge at about
the same rate at q> =0. BBCI requires nearly ten times as many points at q<0 than at q> =0 to
obtain good results.
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Where analytic measures are known, BBCI results are closer than ABC. The model fractal
sets having D(0) near 1.2 require about 10' points to yield good convergence at all q. Those having
D(O) near 2.0 require between 10' and 10 points at qaO and between 105 and about 106 points at
q<0 for good convergence.

Figure 6 shows ABC and BBCI cpu time versus normalized in(N) for the fractal models.
BBCI cpu time exceeds ABC cpu time for large N, but it is lower at small N. The curves cross
between 10' and 10'. Both of the present algorithms generally yield good (5 percent) convergence
for N between 10' and 10 at q>0.

Cpu time tends to saturate for the present box-based algorithms, which are specialized to
deal with occupation data in prescribed arrays. For exact coordinate data and the corresponding
algorithms. cpu time will go like N2 for correlation integral methods and like N In(N) for sorting-
based box-counting algorithms.

The size of the reference set, the number of shells in the fit, and the number of elementary
boxes influence BBCI cpu time. Preliminary investigations suggest that a reference set comprised
of 25 percent of the total number of points in the fractal subsets is sufficient to obtain equivalent
results. The BBCI cpu times in Figure 6 were obtained using 100 percent of the points as a
reference set and shell diameters ranging from 3 to 49. A 7 68x768 set of elementary boxes was used
for both ABC and BBCI.
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Table 1. Sufficient Values of N to Yield 1 Percent (N,) and 5 Percent (Ns) Convergence.
Box-Counting (ABC) Does Not Converge for q<O.

\q -25 -5 0 5 25

ABC N _ 1.2E4 1.2E4 3.1E3

N5 3.1E3 770 770

asymmetric snowflake
[0.4.0.21, D(O) = 1.16.

BBCI N1  7.9E4 5.2E4 1.2E4 770 3.1E3

N5 3.1E3 3.1E3 770 190 770

ABC N, 1.2E4 1.2E4 5.2E4

N5 3.1E3 3.1E3 3.18E3

triadic snowflake.
D(q) = 1.26 all q.

BBCI N1  1.2E4 1.2E4 1.2E4 1.2E4 5.0E4

N5 770 770 770 770 770

ABC N1  1.8E6 1.6E5 1.6E5

N5  1.6E5 1.5E4 1.5E4

split snowflake halls.
D(0) = 1.86.

BBCI N, 2.4E9? 2.0E7 1.6E5 1.6E5 1.6E5

N5 1.6E5 1.6E5 1.5E4 1.5E4 1.5E4

ABC N, 3.7E5 3.7E5 3.7E5

N, 2.9E4 2.9E4 2.9E4

13 element generator,
D(0) = 2.0.

BBCI N1  8.2E8? 4.8E6 2.9E4 3.7E5 3.7E5

N5 4.8E6 3.7E5 2.9E4 2.9E4 2.2E3

ABC N& 1.0E9 1.0E9 1.0E6 1.0E5 1.0E6

N5  1.0E8 1.0E8 1.0E5 1.0E5 1.0E5
sixfold symmetric
mapping, D(0) = 2.0.

BBCI N, 1.0E7 1.0E7 1.0E6 1.0E5 1.0E6

N5 1.0E7 1.0E6 1.0E5 1.05 1.0E5
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Figure 1. Hcntschel! and Procaccia generalized dimension D(q) versus normalized
logarithm of the number of points in the fractal subset for the
asymmetric 10.4,0.21 triadic snowflake.

(a). q = -25.
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Figure l(b). q = -5.
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Figure 1(c). q =0.
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Figure 1(d). q = 5.
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Figure l(e). q = 25.
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Figure 2. Hentscheil and Procaccia generalized dimension D(q) versus normalized
logarithm of the number of points in the fractal subset for the
monofractai Koch triadic snowflake.

(a)- q = -25.
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Figurc 2(b). q = -5.
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Figure 2(c). q = 0.
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Figure 2(d). q - 5.
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Figure 3(b). q = -5.
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Figure 3(c). q = 0.
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Figure 3(d). q =5.

20



1.5

................ 0.........1 10 . . . . .-0 . . . . .

1.4-

.,1.3

1.2 -
#I

1.01•-

13 5 7 9
ln(N)/ln( 1)

Figure 3(e). q = 25.

21



3.5

2.8
000,i

G"2.1- .-C

0.7"

4 5 6 7 8
ln(N)/ln(13)

Figure 4. Hentschell and Procaccia generalized dimension D(q) versus normalized
logarithm of the number of points in the fractal subset for the 13
element generator construction (ref 8).

(a). q = -25.

22



3.0

ABC°•o

1.8
,2.-

BBC

00 0p

34. 5 6 7 8
ln(N)/ln(1 3)

Figure 4(b). q = -5.
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Figure 4(c). q = 0.
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Figure 4(d). q = 5.
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. for the symmetric chaotic mapping of Figure 3(a) of Reference 9.

(a). q = -25-

27



2.5

2.0- 00'

BBCI

1.0
I8

0.5
10- . -

0.

0 2 4 6 8 10

ln(N)/ln(10)

Figure 5(b). q = -5.
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Figure 6. Cpu time versus normalized logarithm of the number

of points in the fractal subsets.

(a). Asymmetric [0.4.0.21 triadic snowflake.
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Figure 6(b). Koch triadic snowflake.
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Figure 6(c). Split snowflake halls.
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Figure 6(d). Mandelbrot's construction based on a 13 element (yenerator (ref 8).
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Figure 6(e). The D6 symmetric chaotic mapping of Figure 3a of Reference 9.
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ATTN: SMCWV-QA 1

NOTE: PLEASE NOTIFY DIRECTOR. BENP-T LABORATORIES. ATTN: SMCAR-CCB-TL OF ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COPIES

ASST SEC OF THE ARMY COMMANDER
RESEARCH AND DEVELOPMENT ROCK ISLAND ARSENAL
ATTN: DEPT FOR SCI AND TECH 1 ATTN: SMCRI-ENM 1
THE PENTAGON ROCK ISLAND, IL 61299-5000
WASHINGTON, D.C. 20310-0103

MIAC/CINDAS
ADMINISTRATOR PURDUE UNIVERSITY
DEFENSE TECHNICAL INFO CENTER 12 P.O. BOX 2634 1
ATTN: DTIC-FDAC WEST LAFAYETTE, IN 47906
CAMERON STATION
ALEXANDRIA, VA 22304-6145 COMMANDER

U.S. ARMY TANK-AUTMV R&D COMMAND
COMMA"NDER ATIN: AMSTA-DDL (TECH LIBRARY) 1
U.S. ARMY ARDEC WARREN, MI 48397-5000
ATTN: SMCAR-AEE 1

SMCAR-AES, BLDG. 321 1 COMMANDER
SMCAR-AET-O, BLDG. 35 IN 1 U.S. MILITARY ACADEMY
SMCAR-CC 1 ATTN: DEPARTMENT OF MECHANICS 1
SMCAR-FSA 1 WEST POINT, NY 10966-1792
SMCAR-FSM-E 1
SMCAR-FSS-D, BLDG. 94 1 U.S. ARMY MISSILE COMMAND
SMCAR-IMI-I, (STINFO) BLDG. 59 2 REDSTONE SCIENTIFIC INFO CENTER 2

PICATINNY ARSENAL, NJ 07806-5000 ATITN: DOCUMENTS SECTION, BLDG. 4484
REDSTONE ARSENAL, AL 35898-5241

DIRECTOR
U.S. ARMY RESEARCH LABORATORY COMMANDER
ATTN: AMSRL-DD-T, BLDG. 305 1 U.S. ARMY FOREIGN SCI & TECH CENTER
ABERDEEN PROVING GROUND, MD ATITN: DRXST-SD 1

21005-5066 220 7TH STREET, N.E.
CHARLOTTESVILLE, VA 22901

DIRECTOR
U.S. ARMY RESEARCH LABORATORY COMMANDER
ATTN: AMSRL-WT-PD (DR. B. BURNS) 1 U.S. ARMY LABCOM
ABERDEEN PROVING GROUND, MD MATERIALS TECHNOLOGY LABORATORY

21005-5066 ATTN: SLCMT-IML (TECH LIBRARY) 2
WATERTOWN, MA 02172-0001

DIRECTOR
U.S. MATERIEL SYSTEMS ANALYSIS ACTV COMMANDER
ATITN: AMXSY-MP 1 U.S. ARMY LABCOM, ISA
ABERDEEN PROVING GROUND, MD ATTN: SLCIS-IM-TL 1

21005-5071 2800 POWER MILL ROAD
ADELPHI, MD 20783-1145

NOTE: PLEASE NOTIFY COMMANDER. ARMAMENT RESEARCH. DEVELOPMENT. AND ENGINEERING CENTER. U.S.
ARMY AMCCOM. AITN: BENfE-T LABORATORIES, SMCAR-CCB-1L WATERVLIET. NY 12189-4050 OF ADDRESS CHANGES.



TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT-D)

NO. OF NO. OF
COPIES COPIES

COMMANDER COMMANDER
U.S. ARMY RESEARCH OFFICE AIR FORCE ARMAMENT LABORATORY
ATTIN: CHIEF, IPO 1 ATTN: AFATL/MN I
P.O. BOX 12211 EGLIN AFB, FL 32542-5434
RESEARCH TRIANGLE PARK, NC 27709-2211

COMMANDER
DIRECTOR AIR FORCE ARMAMENT LABORATORY
U.S. NAVAL RESEARCH LABORATORY ATTIN: AFATL'MNF
ATITN: MATERIALS SCI & TECH DIV 1 EGLIN AFB, FL 32542-5434

CODE 26-27 (DOC LIBRARY) 1
WASHINGTON, D.C. 20375

NOTE: PLEASE NOTIFY COMMANDER. ARMAMENT RESEARCH. DEVELOPMENT. AND ENGINEERING CENTER. U.S.
ARMY AMCCOM. ATTN: BENtT LABORATORIES, SMCAR-CCB-TL. WATERVLIET, NY 12189-4050 OF ADDRESS
CI IANGFS.


